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1. Introduction

This final report covers 1 year of ARO-sponsored research into the
fundamental behavior of rotor dynamics. The original proposal was for 3
years, but the first two years were done under a separate grant. Thus, this
report covers only a portion of the originally-proposed work. In this final
report, we will summarize the work done, including publications and
scientific personnel; and we will provide pertinent technical descriptions of
each major area we have pursued.

The philosophy of our research has been to increase the fundamental
understanding of those dynamic and aerodynamic phenomena associated with the
helicopter. Our approach has been to follow three intertwining lines of
research. The first of these is the line of mathematical modeling. Here, we
wish both to synthesize and refine mathematical models for various, isolated
rotorcraft phenomena, and to learn to couple them together in a systematic
way. This is the building-block approach we have followed. The second line
of inquiry has been in the development of solution methodologies for these
equations. Here, certain solution strategies work better for certain models;
and some modeling techniques require new solution strategies. We look
specifically at methods that magnify our insight, are computationally
efficient, and that can be extended to large-scale systems.

This leads, then, to the third thread of research: basic physical
insight. Of course, because we deal with isolated components or with
simplified couplings, we do not intend to be able to make predictions on
helicopter stability and response that would be applicable to detailed design
studies. On the other hand, we do expect our methods to be predictive of the
behavior of simplified research models, such as those used by the Army
Research and Technology Laboratories. Furthermore, we believe our results
give qualitative insight into the physical phenomena present in production
rotors. Thus, we try to involve all three elements in our research effort.

2. Statement of Problem

The objectives and scope of this work are as follows:

1) To discover the basic relationships between blade structural
parameters and the flap-lag-torsion airloads that result.

2) To determine the extent to which rotor-body coupling affects
inplane loads and overall helicopter vibrations.

3) To develop our basic trim procedures to the point at which they can
be applied to large, state-of-the-art rotor response program.

!
1
R ~
4) To determine the effect of dynamic stall on the rotor airloads and :
on the basic trimming methods. }

I

5) To investigate other methods of obtaining time histories of rotor
response, including Hamilton's Law of Varying Action.




Before proceeding to the details of each objective, it is informative to
outline the scope in each task. With the exception of item 3, the above
objectives are not aimed at the quantitative prediction of helicopter
response. They are aimed at obtaining fundamental insight into how rotor
vibrations develop and into how they can be efficiently calculated. Thus, in
item 1 we consider a simple elastic-blade model with elastic flap, lag, and
torsion. Although other, more sophisticated flap-lag-torsion models
certainly exist, they have not been obtained under the same assumptions now
with the same purpose in mind as ours. Thus, we have proceeded slowly and
carefully to make sure we understand the physical processes at each step.

In item 2, we are looking at a fuselage with 5 rigid body modes and 4
elastic modes (as in our prior work) but with a more detailed rotor model.
Naturally, a true fuselage will have many more elastic modes; but we look at
a generic frequency sweep that could be representative of several potential
modes. Since we have already found that flapping motions drive inplane
motions (while inplane effects flapping much less) we make several
simplifying assumptions to increase the productivity (and physical
interpretations) of the work.

Item 3 is the only area in which we approach the area of applications.
These trim procedures are now fairly well understood in terms of theory, and
the advancements now come through more sophisticated applications.
Therefore, we have reformulated the trim procedures.

Item 4 is a new area of research that developed out of our dynamic-stall
work. It is not in our scope to develop any dramatically new dynamic stall
procedures. We merely take existing methodologies, investigate how they
should be modified to be useful for simplified vibration analyses, and study
the resultant effects on the types of calculations we are making.

Item 5 is also a new area of research which developed out of our prior
trim investigations. For nearly linear systems, the trim method of periodic
shooting is equivalent to finding and inverting the Floquet transition
matrix. (An earlier solution method in our research also relied on Floquet
theory for vibration analysis.) Thus, it is natural to look for more
efficient means of finding the transition matrix. One possibility is the use
of Hamilton's Law of Varying Action with comparison functions in time. In
this research we study Hamilton's Law in detail with respect to convergence
and efficiency.




3. Scientific Personnel and Degrees

Below is a tabulation of those who worked on this project during the
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Cheng-Jian He 2.0 Ph.D.
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5. Summary of Results

In this section, we summarize the results of our research for this
one-year effort. However, (the first two years were performed at Washington
University in St. Louis), we will also refer to how this third year completes
the work begun in the first two years. Reference numbers refer to
publication in Section 4.

5.1 Finite Elements in Time

Recently, much attention has been give to numerical application of
Hamilton's Law of varying action. Hamilton's Law is a variational statement
about "action" which provides, for the time domain, what variation of work
provides in the space domain. Thus, these applications of Hamilton's Law
result in finite elements over the time domain; and these can be either
p-version, h-version, or a combination of the two (depending on the choice of
test functions). However, numerical applications of Hamilton's Law have
sometime resulted in solutions that do not converge as the number of elements
(i.e., polynomials) is increased. In this research, a convergence proof was
found, based on the bilinear formulation, which demonstrates that some
formulations are not truly bilinear and may not converge. The proof also
leads to an alternate, bilinear formulation of Hamilton's Law for which
convergence is assured. The bilinear formulation also leads to an
alternative statement about dynamics. In particular, the "virtual action"
plus the variation of action over a space-domain must always sum to zero.

Numerical application of the correct bilinear formulation leads to
Lagrange multiplier with the physical connotation of an end momentum (which
is the analogy of end force in spatial problems). Thus, initial velocity is
treated as a "natural" rather than as "geometric" boundary condition; and the
Lagrange multiplier converges to the unknown momentum (i.e., velocity) at the
end of the time period. Thus, the bilinear formulation is a "mixed method".
Accuracies of solutions with the Lagrange multiplier are an order of
magnitude better than those which use the derivative of shape functions for
velocity.

In the 1imit as one takes many elements with only a few polynomials
each, this formulation reduces to a classical time-marching method, (an
h-version finite element) similar to Euler, Runge-Kutta, or predictor
correctors. In the 1imit as many polynomials are used per element, but with
only a few elements, the method becomes similar to a Ritz-Galerkin procedure
in time ( a p-version finite element). Results show that, for any given
problem (as characterized by the computational cost of a function
evaluation), there is an optimum choice of polynomial number in order to meet
any error criterion with minimum computational effort. Similarly, depending
on the problem, a particular choice of polynomial number may or may not be
more efficient than conventional time-marching methods. In general, finite
elements in time become more efficient than marching as the desired accuracy
becomes exacting and as function evaluations become computationally
expensive.
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The details of this work can be found in References 5 and 7. Figures 5
1-5, taken from Reference 5, summarize the major conclusions of the work.
Figure 1 shows the blade flapping angle, B, at the end of one rotor
revolution as calculated both by Hamilton's Finite Elements and by our new,
! bilinear formulation. One can see that, for Hamilton's Law, g fails to
- converge uniformly as the number of basis functions is increased. Figure 2
further shows that this divergence is not restricted to a certain advance
ratio. Results with Hamilton's Law can be in error over 100% even with 12
basis functions at y = 0.5. The new formulation, on the other hand,
converges in all cases.

- -
L

AN
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Figure 3 provides hp-optimization information. The figure gives log
of the error as a function of the number of floating-point mu]tip]ication%
required in the computation, M. The straight-lines are for various number of
polynomials per element, n, with the step size being a running parameter
along the lines. One can see that, for any given error tolerance, there is a
minimum M given by the interior of optimum curve formed by the locus of
straight lines. The x's are results from Hammings predictor-corrector. For
} this case (C=16 implies 3 to 4 sine or cosine functions in each coefficient), :
N the hp finite elements are always superior to conventional time marching. -]

PN
ot e L P
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Another interesting result of our research can be seen in plots, like

Figure 4, which show error on the interior of a large, p-version element.

-~ The error norm is zero at t=0 (due to known initial values). It goes through
some erratic oscillations (due to truncation errors near x=0), but settles -

- down over the rest of the element. The minimum error, however, is found at

ﬁi t=1, the end of the period. The values at the end of the period are exactly
what is needed for Floquet theory. Thus, finite elements in time (when

correctly formulated) are ideal for Floquet applications.

"

Finally, we consider numerical stability when finite elements are used

to march indefinitely, Figure 5. The values p and o are the system frequency

t‘ and damping multipiied by the element length, aAt. The exterior of the large
RN semi-circles (as well as the interior of the small semi-circles on the p
axis) are conditions of numerical instability. "n" is the number of
polynomials per element. To put this in perspective, typical radii of
o convergence for other methods are near 2 = 1.4, smaller than even the n=2 N
. result. At n = 6, a step size equal to two periods (r=3w) is required before e
instability occurs. From Figure 3, however, we see that such a large step
size would result in very large errors with or without the instability. No
optimal point on Figure 3 is unstable.
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- 5.2 Dynamic Stall

A major portion of our research has dealt with the introduction of a
modified ONERA model (for dynamic stall) into rotor elastic-blade analysis.
In this research, reported in References 4 and 6, flap and inplane bending
are described by two nonlinear, partial-differential equations which are :
coupled together as derived in Reference 1. Each equation consists of lower -~
o and higher order terms. Approximate solution methods are applied to these
: aeroelastic equations. The aerodynamic circulations are expressed by our
X unified thecry. Only lower order terms of the equations in Ref. 1 are
- - considered in the analyses. This allows the investigation of the general
. trends of the result without going into cumbersome computation with little
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improvement. In the following, we write the system of equations to be solved
including lower-order terms only

Flap equation, order ¢

_(nv*)*+/\6‘v**“+fv'=-(;’;-(1=,+1=2)(.?+ysinw) : (1)

Lag equation, order g2

- : .? . L1}
- ('T"v*)* + AT T (A= AYO+ P -2f WA + 7 — 7 =
0

-

-é§f|+FNW*uwsw+i3+%)’€%cmf+uﬂnwf

(2)

T, equation. order |
kT + iT| = iaU, + 6be*
(3)

T, equation. order |
_1-_. —. b 3 b I — * 6AC- *
k°Ta + 2dwkTy + w (1 +d )Ty = - w(l + d)[U,AC, + ek (U AC. + -::-9—'0".)]

(4)

It is interesting here to note that the terms of the lag equation are of
higher order compared to the terms of the flap equation. Thus, to first

order, flap drives lag in an important way, but lag has a lesser effect on
flap.

An effective way of obtaining accurate pitch inputs is based on the use
of an automatic feed-back system that can trim the helicopter. The
auto-pilot equations are developed and expressed as follows:
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f090+90=f10[cr-—; ’; p]
s 5 -1 8p° - 1)
110,+60=A|(p—°y——)[cosw—(pf)smw]ﬂ (6)
L 5 -1 1
t|9c+9c=—A|Lp-o_’,—)[SindI+E‘£.’,—Q-COSW1[3

(7)

This automatic-feed-back system provides control to the helicopter for
numerical purposes. It adjusts the pitch of the blade to maintain thrust,
roll moment, and pitch moment. The parameters A0 and Al are controller

2.
gains. The parameters 0 and T, are time constants. The grouping 8 LE;—ll

is a coupling parameter giving the pitch-roll coupling of es and ec. The
2

grouping ig;ﬁ is an estimate of rotor thrust in the absence of an explicit
CT equation.

In the computational algorithm, input parameters define the basic
aircraft configuration and flight conditions. The blade type is defined by
its root stiffness, solidity, Lock number, damping, and airfoil type. Flight
conditions, on the other hand, are characterized by the advance ratio, and
thrust coefficient. In Table 1, we present the common parameters used in the
cases discussed in this report. These parameters are selected from current
helicopter data and used for illustration purposes. It is noted that we use
only a constant value of C,. In future work, we intend to include a variable
CD based on stall assumptigns. Thus, the major study here is the effect of

stall on 1ift but not on drag.

Vibration analysis includes flap and lag responses and their sensitivity
to advance ratio and thrust coefficient. The torsion effect is neglected in
this study. The variation of the automatic control settings required for
trim is determined for a blade revolution in a steady state. In addition,
the change of these settings as a response to blade stall is identified.
Last, the vibration in the flap direction obtained from the stall model used
in this research work is compared to results obtained when a linear
aerodynamic model is used.
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Table )} Baseline Parameters

Parameter Numerical Value Physical Description

w5

7 6.63 Lock number

. a 6.461 lift curve slope

e . Cp .01 drag coetficient
% 014 L
As ' mQ-R?

< El
L& 002 :

_ b
b 05 x
i P 1.03 flap frequency
- f ] profile drug coefficient

W
t

2 )

solidity

RN
aQ
—

Ky .0203 stiffness of tlap root
'—. K .02083 stiffness of lag root

C, 025 damping coefficent
~',. 129 6.6 time constant

T T, 1.884 time constants

f

ey
.

A Aqg 2.6 gain

A, A, 3.6 gains.




DAL am at e

ks
[

-

"-_"\ ,

'-".DA' :’

15

In order to determine the response of a helicopter blade, one must
determine the pilot controls (collective pitch, cyclic pitch, and shaft tilt)
that are applied to the rotor. There are two primary methods of doing this.
One method is based on formulas derived by a harmonic balance of the
equations without stall. In the other method, an automatic pilot is
implemented to update the controls, equations (5-7). In either case, the
purpose of the controller is to eliminate first harmonic moments (in the
rotating frame) which come through (to the fixed frame) as steady pitching
and rolling moments. In other words, "trim" implies (among other things) the
balancing of these moments.

Figures 6-9 provide plots of the flapping response at x = 0.7. Because
this is a rigid blade with root spring, flap displacement, w, is a direct
measure of root moment. The four figures show a variety of thrust
coefficients and advance ratios, some with stall (high u, high C;), and
others with little or no stall (low u, low C;). We see immediatlly that the
approximate formulas for trim give a large a%ount of 1/rev (i.e., sin y) in
the response. Thus, they are not accurate due to the aspects of the model
neglected in such formulas (inplane motion, unsteady aerodynamics, nonuniform
inflow distribution, and stall). The results with the automatic pilot,
however, show two peaks per cycle, indicative of 1ittle 1/rev, mostly 2/rev,
and some 3/rev, which is indicative of trim.

It is interesting that most investigations in this area have had trouble
obtaining a correct trim. For example, Figure 10 shows results at u = 0.4
from Friedmann. Two different jteration schemes are used for the two plots.
Notice, however, that the results (although labelled as "propulsive trim")
have a large 1/rev component very similar to that seen in our
approximate-formula results of Figure 6. This is to be expected because only
an approximate formula is used. Figure 11 presents other results from
Chopra. Here, we see a very large fore-to-aft 1/rev for a rotor supposedly
in "propulsive trim" at C_ = 0.1, y = 0.2. Furthermore, the curves show that
the response is not even Seriodic, as the slopes do not match at ¢y = 0° and
360°. In Figure 12 taken from a later Chopra reference, the authors attempt
to correct the lack of trim found in Figure 11. The dashed curve is the old
result (although in this paper it is corrected to be periodic), and the solid
curve is the new result. In this new result, the trim solution is modified
to include elastic twist. Notice, however, that although the 1/rev has been
reduced by about 50%, it is still very much present. Furthermore, the solid
curve is not all periodic, with an error of over 100% in the slope between y
= 0° and ¢y = 360°. This points out the difficulties in finding a good trim
solution with elastic-blade equations. The autopilot aids greatly in this
regard.

In summary, unified-aerodynamic model has been introduced in the
elastic-blade equations. This model is an extension of the ONERA 1ift model
and includes plunge, unsteady free stream, and large angles of attack. An
ordering scheme has been used to segregate the important terms from others.
The elastic-blade equations are presented as lower-order terms and
higher-order terms in the flap, lag, and circulation equations. A solution
method based on a modified Galerkin's method is used to separate the time and
space variables in the differential equations. A numerical solution is
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k - obtained by solving the equations for time history. Two methods have been
. used for trimming purposes. Dynamic response has been conducted for a
Il variety of thrust coefficients and advance ratios. Results lead to the

. following conclusions:

b

b s 1) The approximate method, in which pitch settings are approximated,
G: gives large once-per-rev oscillations in the flap response.

B 2) Automatic controllers eliminate the once-per-rev and are used
X successfully beyond stall limit.
5.3 Tip-Loss Aerodynamics
1 il In this area, we have made two very important contributions to the
e understanding of tip loss. First, we have developed methods to optimize the
l1ifting-surface mesh. This optimization not only improves accuracy but also
L guarantees convergence, something that cannot be said of conventional mesh
o choices. Second, we have developed closed-form estimates of the far-wake
’ contributions to induced velocity even with wake contraction. This improves
. convergence on velocity computations by a factor of 10. These two methods
- together from the nucleus of our tip-loss computer code which is now being
b utilized. Because neither of these developments has yet been published

(although papers are now in review), we attach to this report an extended

D abstract which outlines the developments in mesh choice; and, under separate
T cover, we have sent to ARO a manuscript on the far-wake methodology, which

1 has been submitted to the Journal of Aircraft.

i' 5.4 Rotor-Body Coupling

Our research in rotor-body coupling has been severely hampered by a
BN tragic accident involving Huang Ming-Sheng, the graduate research assistant

i involved in this work. Reference 8, attached to this report summarizes the
basic theory behind the work, which was developed by Mr. Huang prior to his N
i accident. Since recovering from these injuries, he has undertaken the task
s of coding this theory. That work is now completed. Due to the loss of time, >
¢ we are not now able to deliver extensive numerical calculations as we had N
b . hoped. We will, however, continue this research (hopefully under future ARO ~
SN funding). <
e ~
5.5 Dynamic Inflow .
-
S We have made considerable progress in this grant toward achieving more

widespread use of the theory of dynamic inflow. Reference 2 provides the

A ultimate correlation between our ARO-sponsored inflow model and wind-tunnel

i; test data in the Ames 7x10 wind tunnel. Reference 3 gives a review of the
past 30 years of dynamic inflow modeling including the present state of the
art and current research interests. Current research interests which we have
pursued in this grant are: 1) role of tip-path dynamics on actuator-disk
assumptions, 2) effect of hub motions on dynamic inflow and 3) relationships
between higher-harmonic dynamic inflow and unsteady aerodynamics. In the

> first item, we now believe that tip-path dynamics should not alter the

" momentum statement of dynamic-inflow theory. In the second area, hub motions
can effect the formulation of linearized dynamic inflow. We have worked out
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the details in Ref. 3. In item 3, we have uncovered some very strong
relationships between Loewy theory and dynamic-inflow theory. Those may
allow us to develop a 3-dimensional, unified theory of unsteady aerodynamics
that is applicable to rotary-wing problems. An extended abstract concerning
this new theory has been submitted to the AHS Forum and has been sent to ARO
under separate cover.

5.6 Multiblade Transform

One of the smaller tasks in our research effort has been the study of a
modified multiblade transform designed to put the differential mode into the
nonrotating system. This work is essentially complete, although the student
involved has not yet finished writing his M.S. thesis. The major conclusions
are as follows:

1) The new transform for 2-bladed rotors does provide improvement over
the conventional 2-bladed transform. In particular, it captures the
essentials of the 1/rev instability at high u.

2) For rotors with an even number of blades greater than 2(e.g.,
4,6,8,etc.), there are two possible alternate transforms. One provides some
improvement in the transient analysis but degrades accuracy of the forced
response. The other improves forced response but degrades transients.
Therefore, it is doubtful that either transform will be of general use in
dynamics analyses.

3) As a spin-off of the study, we have developed matrix-manipulation
algorithms that can perform the multi-blade transformation (either
conventionally or in one of our new ways). These algorithms offer a simple
way to make this important change of variable, and they are superior to
computer algebra, numerical analysis, or fourth-order tensor approaches used
by other investigators.

6. Summary of Results

In summary, we can say that our research has been very successful. It
has resulted in improved analysis tools and in improved understanding of
rotor vibrations. Many of these tools have been (and are being) integrated
into production rotor codes.
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. ABSTRACT
)
-~
b
: g Researchers often use lifting-line and lifting-surface (or panel) theories to obtain
b .
L i::: lift and drag of fixed and rotating wings. The choice of panels, line segments, and control ;
+ points within panels (i.e., collation points) is usually performed on an ad hoc basis based on
A engineering judgement. The results of this research show that of ten—used methods such as: 1)
] - [
" placing control points at mid-span of the panel, 2) placing large panels near the blade root
) E’ and small panels near the wing tip. and 3) using equally-spaced panels near the blade tip. all

result in order—unity errors in the calculation; and these errors do not decrease with refined

mesh even as the number of panels and the number of significant digits is increased without

-~ 3 7T 7 ¥Tr

bound. They are non-vanishing residuals. '

. The work reported here describes both how to eliminate these residual errors

£h

-
v

through proper choice of panel size and control points, and how to optimize the mesh size

to give the maximum rate of convergence as the number of panels is increased. Comparisons

with experimental data, with other lifting-line and lifting-surface results, and with a

classical Fourier solution, demonstrate the superiority of the new procedure over

conventional mesh—choice methods.

'.w.'l e WERRE W WV TN eTe € M. W . T .V T aeT T W e,
.




LR N I RS R DA Y e A S L AL B ML S LEAL AL L SR NN 0 P 0 Aab el Sat e Seb J e’ et Daf e Buf i Bt ot A Bd Bl Bl BA 2t DA B A A Rl 0y 43

i INTROLUCTION

Y _ It is commonly agreeed that the key to accurate calculation of the rotor aerodynamic
behavior is the correct modeling of the rotor wake. McCroskey' concluded that lifting-line
. calculations (for rotary-wings) are in error, regardless of the wake model. The
. prescribed-wake method of calculation also gives errors in spanwise loading distribution,
7 regardless of which representation is used for the surface of the blade. Even with the
complicated free-wake models, lifting-surface codes still fail to predict adequately some
cases with highly nonlinear twist distribution. It has been proposed that a major part of
s these observed discrepancies is due to improper selection of collocation points, (i.e., the
possibility of running into mathematical singularities that have no physical counterpart®).
Most present-day rotor analyses employ a Kernel-function (in the Mangler sense),

which contains a higher-order singularity and is diffcult to handle. Some researchers.

i however, employ the Vortex Lattice Method (VLM) which amounts to a Cauchy-type
finite-element solution to both lifting-surface and lifting-line problems. Many applications
-
::’. of the VLM have been made to problems of the aerodynamic analysis and design of wings
with considerable sucess.’® However, the prediction of the detailed aerodynamic
.! i performance of a rotary wing is more difficult than that of a fixed wing. In the latter, the
B wake trails back from the wing in a relatively straight path to downstream infinitv. The
> effect of the trailing vortex on the calcuiation can be minimized by use of certain
5 mathematical techniques or by use of a free-wake model, which automatically allows wake
roll-up. In the case of a rotary wing, the blades pass directly over their own wakes as well
::.: as those of other blades as they rotate. Furthermore, a given element has a longer residence
= time in the immediate vicinity of the rotor plane compared with that of a fixed-wing vortex
,:; element. Many computational efforts has been performed to reduce the error caused by
- wake vortex elements of rotary wings. These include the numerical integration technique
E" (for the prescribed-wake models), curved-vortex elements ® (for free-wake models). and

division of the wake into three separate regions with each computed separately.’
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The intention of this research is to discover if a simple, systematic, optimized VLM
approach can be developed for application to both fixed and rotary wings (especially for
helicopter blades), despite criticisms of the VLM, which continue. These criticisms contend
either that the lattics are laid out in a preconceived manner to give some desired answer or
that too many lattices are required for adequate convergence of the compuled 1>ading. The
present work is to derive systematically an optimized vortex-latlice lavout which overcomes
these objections and which can be applied to a wide variety of configuration, including

rotary wings.

RECENT DEVELOPEMENTS AND SCOPE OF WORK

{A) 2-D thin airfoil theory:

In the conventional VLM, a thin airfoil is divided into a number of element panels,
N, and a horseshoe vortex is placed at the 1/4 quarter-chord of each panel. The control
point is located at the 3/4 quarter-chord of each panel. The results agree with Jame's'®
analysis that the first prediction-value (vortex strength) is consistently 11.4% too low for a
variety of cambers. Furthermore, increasing the number of elements does not help acurracy.
But C, (lift coeff.) and C,, (pitching moment coeff.) are always exact for N greater than 2.
This is the reason that the majority of acrodynamists use conventional VLM. Lan? developed
the so-called "semi-circle rule” to select collocation points and obtain the essentially exact
C. C, and vortex strenth. Kocurate'' used a Doublet-Vortex method to find the local
circulation in this 2-D case and applied it to the lifting-surface performance analysis for
hovering rotors. His panel spacing is biased bv a cosine distribution, but control points are
located at the midpoint of each panel. The method does converge as N is increased, but the
rate of convergence is still too slow. Results in this paper show that the semi=circle rule can
be applied to both panel size and collocation points to obtain essentially exact values of C,,
Cn. and vortex strength.
(B) Lifung line theory:

Glauert'” solved Prandtl's Lifung-line formula by using a Fourier Series method.

Dejarnet'® applied Multhopp's intepolation technique to obtain the same result as Glauert.
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The conventional VLM divides the entire wing span into a number of panels, M. Also, the
trailing point is located at the boundary of each panel; and the the control point is placed at
the midpoint of each panel. The 1/4-3/4 rule is also used by Hough' to afford a
singnificant reduction in computational costs. Dejoung'® has proved that there is
mathematical convergence of the VLM 1o the exact answer, when the 1/4-3/4 rule is used
as M (or N, in 2-D case) approaches infinity. The crux of the matter lies in assessing how
fast the verified 1/4-3/4 rule improves the convergence and if it is an optimized-choice.
Actually, the 1/4-3/4 rule is a special case of the Finite-Difference method, for which
locations presumably can be chosen arbitrarily. In this paper, however, we show that if the
collocation points are laid out according to a special shape function, which has the same
shape as the desired unknow circulations. then the VLM generates the fastest convergence.
These shape functions must have quadradic behavior near the wing tlip to match the
asymptotic tip behavior'®. Both parabolic and semi-circle functions are valid for this
requirement at the tip. and these functions result in an unequally-spaced Finite-Difference
technique. Results from different shape functions, compared with the classic solution for a
elliptical wing, confirm the rapid convergence of the new method. A mathematical proof (of
the optimality of the correct shape function) will be included in the final paper.

Basin'’ derived the mathematic equation of lifting-line theory for a rotary wing (in
the prescribed-wake sense). Rosen’ extended it to curved blades. Both of these usc 10
equally-spaced meshes, but the results are not particularly accuraté. Part of reason stems
from the fact that M is not large enough due to poor selection of collation points. By using
a semi-circle or quater-circle to select collation points, we can guarantec rapid convergence.
Also included in this paper is an extension of Multhopp's interpolation technique to
Prandtl's lifting formula for rotary-wing problems. This technique proves to be equivalent
in accuracy to use of the "Fourier Series” method. Although based on a 3~D, rigid-wake
concept, an example is given for lightly-loaded hovering blades, calculated by both

Finite-Difference and Fourier Series techniques. These are compared with the experimental

data'*, and both give excellent correlation.
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(C) Lifting-surface theory:

The conventional VLM layout for lifting-surface theory is to use uniformly-spaced
panels for both chordwise and spanwise directions over the whole wing. The 1/4-3/4 rule is
also used by Hough'* for the spanwise direction and by Belotserkovskii® for the chordwise
direction. A reviews of these results’® reveals that (M,N) should be at least (40,2) 1o give
good convergence for typical fixed wings. Dejarnette'? also applied Multhopp's interpolation
technique to the lifting-surface formula with smaller computation time: but the method can
be used only for rectangular wings. Some crileria, developed from combination of
lifting-line and thin-airfoil theory, can be applied in order to select collocation points.
Results in this paper show that a mesh size of only (10,2) can give excellent convergence 1o
exact values when one uses the semi-circle rule to select panels. For rotary wings, Rosen'®
and Chang™® use only (10.1) equally-spaced panels to calculate aerodynamics; and the results
seem to be doubtful. Proper selection, made by the semi~circle or quarter~circle rule, should
improve the convergence. These criteria are valid not only for VLM but also for the Double
Lattice method, which is an extention of VLM.?! For example, in the case of the propeller
analysis by Murray>’, an increcse in outboard unequally-spaced panels actually appears to
have a detrimental effect on convergence. Thus, meshes cannot be selected or refined
arbitrarily. Finally, one can reformulate the problem to solve for induced drag and pitching

moment as well as for lift.

CONCLUDING REMARKS

We have reviewed the conventional VLM literature with respect to selection of
collocation points and the corresponding results. These generally show a low rate of
convergence. A new criteria for choice of these points is derived from lifting-line theory. A
mathematical proof is provided to show that this is the optimum choice. In summary, the

optimum choice of collocation points can be done as follows:

1. The choice of points in finite-difference lift calculations should be made on the
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basis of equal vortex strength between points, not on equal spacing. Ideally, this would
require an adaptive mesh which could change at each iteration: but practical results show

this is not necessary, and a quasi-optimum mesh can be used.

2. The size of each panel must smoothly transition from large increments to small
increments, moving along the direction in which the rapid change of vortex stregth occurs,

and following a smooth shape function. This function must be quadratic near the tip.

3. One way to choose the points in a quasi-optimum manner is 1o map the spanwise
and chordwise interval according to a function which has the approximate properities of
criterion 1 and 2, such as a semi-circle. Both panel boundaries and collocation points must

be chosen in a smooth manner according to this function.

4. A easy way to map the interval for rotary-wings in subsonic flow is to use the
"Semi-circle rule". An advantage of this mapping is that integrals over the vortex strength,

can often be reduced to closed form. Sevsral semi-circles can be used if several

discontinuities occur.

Multhopp's interpolation technique is also specified as a semi-circle rule for
unequally-spaced Finite Differences, which yields the same error as the Fourier Series
method and can be applied for rotary wings. The results for wing problems by the Finite
Difference technique (unequally-spaced mesh) are found to compare well with experimental
data, but with smaller computational times, improved accuracy, and simplified mathematical

derivation, as compared with other continuous loading methods.
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COMPARISON OF 2-D THIN AIRFOIL
VORTEX DISTRIBUTION WITH

R STRAIGHT-LINE CAMBER
. 1=W(z) = 1 / RelCALEN
2T Jo T— T3
- ERROR PERCENTAGE %
. Nth POINT V.L.M. CURRENT
- 1. 11.363 0.0
- 2. 0.897 0.0
| 3 0.274 0.0003
4, 0.112 0.0001
b, 0.039 0.0001
. 0. 0.013 0.0001
7. 0.070 0.0006
8, 0.174 0.0001
9. 0.466 0.0005
B 10. 2.314 0.0034
Cl 0.0 0.0
Cm 0.0 0.0

* (10 meshes and codes)

..........
.............

..................
............
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COMPARISON OF 2-D THIN AIRFOIL
VORTEX DISTRIBUTION WITH
PARABOLIC CAMBER

" or

0.5(z — 0.5) =W (z) = 1 /1 v(z1)dz;

I— I
ERROR PERCENTAGE %
Nth POINT V.L.M. CURRENT
1. 11.363 0.0028
2. 0.897 0.0003
3. 0.274 0.0002
4. 0.112 0.0003 ‘
5. 0.039 0.0001 ,;
6. 0.013 0.0001 :
7. 0.070 0.0004 b
8. 0.174 0.0001
9. 0.466 0.0008 |
10. 2.314 0.0020 1
Cl 0.0 0.0 1
Cm 0.0 ‘ 0.0
* (10 meshes and codes) 4 > S °§




1o .

1) COMPARISON CF PREDICTED VORTEX

;o DISTRIBUTIONS FOR AN ATRFOIL WITH
5 30% FLAP CHORD AND 30° FLAP DEFLECTION

.,
Cawe 4

SN

v ERROR PERCENTAGE
- NO. POINT V.L.M. CURRENT
1. 15.92 0.25
2. 6.25 0.29
3. 6.10 0.37
4. 6.80 0.88
\ 5. 9.15 13.58
: 6. 18.24 7.38
; 7. 7.59 0.02
L 8. 11.59 0.07
- Cl 4,07 0.17
- Cm 2.25 0.025

* (8-(5;3)— m=skes and codss)
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(1) FOURIER SERIES METHOD, REF 12
(2) MULTHOPP'S INTERPOLATION,
REF 13

(3) Panel spacing is biased by a parabolic
distribution, but control points are located
at the midpoint of each panel. Also, wing
tips are specified as boundary points.

(4) Panel spacing is biased by a cossine
distribution, but control points are located
at the midpoint of each panel. Also, wing
tips are specified as boundary points.

(5) Both control and trailing points are
selected according to equally~spaced
panels and wing tips are specified as
boundary points.

(6) Panel spacing is biased by anelliptic
distribution, but control points are located
at the midpoint of each panel. Also, wing
tips are specified as boundary points.

(7) Both control and trailing points are
selected according to the parabolic
function and wing tips are specified as
boundary points.

(8) Both control and trailing points are
sclected according to semi-circle rule and
wing tips are specified as boundary points.
(9) Both control and trailing points are
selected according to equally~spaced
panels and wing tips are specified as
trailing points.

(10) Both control and trailing points are
selected according to the parabolic
function and wing tips are specified as
trailing points.
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COMPARISON OF VORTEX DISTRIBUTION
FOR A RECTANGULAR WING WITH
EXPERMENTAL TESTS (Cl per degree)

| AR=1.13
METHOD TYPE ERROR %
MULTHOPP(20)* L-LINE 37.00
» (10;1)° | L-SURFACE 1.80
" (10;2)° | L-SURFACE | << 0.10
" FINITE(10;2)~ | L-SURFACE 0.41

AR=2.13

METHOD TYPE ERROR %
MULTHOPP (20)° L-LINE 19.00
" (10;1)° L-SURFACE 3.90
" (10;2)" L-SURFACE 2.30
FINITE(10;2)" | L-SURFACE 1.90
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INTRODUCTION

1.1 BACKGROUD

Helicopter vibration reduction is important as well as useful. With less vi-

bration, a helicopter can survive much longer and can provide a comfortable en-

-
- vironment for passengers. However, unlike conventional fixed-wing aircraft, the
L helicopter suffers an intrinsic, severe vibration source in the main rotor, which con-
~ tains elastic blades and is connected flexibly to the fuselage by a hub-pylon system.
4 So, the problem is rather sophisticated. It is well known that the fuselage motions
. due to rotor vibrations will cause the hub to move in all degrees of freedom. This
é hub motion can cause the hub loads to be different from those calculated for a

fixed-hub condition. This alteration can often be an order-of-magnitude change.
- Therefore, in studying the effect of hub motions on hub loads, we are actually

studying a feedback system.

1.2 PREVIOUS WORK .

” The concept of performing a coupled rotor/airframe vibration analysis by

impedance matching was pointed out in 1964, Reference 1, which indicates two

L\ important facts. First, a coupled rotor/airframe analysis can be performed in a
: rigorous maner by separate calculation of rotor and fuselage impedances followed
- by a matching of forces and displacements at the hub. Second, the rotor impedance
- need only be calculated for a single blade and then appropriately transformed to
" apply to any number of blades.
-,‘ In 1974, Staley and Sciarra treated the vertical vibrations of a coupled rotor
and fuselage, including the effect of vertical hub motions. They used a lumped
\ mass for rotor impedance and showcd that hub motions could create order-of-
| magnitude changes in hub loads. In Reference 3, Hohencmser and Yin further
[':" investigate the effects of rotor-body coupling. Their model for rotor impedance

is based on a rotor representation th.. includes two masses(each equal to one-

half of the total rotor mass) connected by a spring to represent the first flapping
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frequency. Reference 3 presents some very interesting conclusions that pertain

to fuselage design. Particularly, it notes that under certain conditions it may be

desirable to tune a fuselage frequency to the blade passage frequency in ordor to

eliminate hub loads. Also, it outlines a method of computing the complete rotor

AR

impedance by finite elements and transfer matrices. Other work on the impor-

tance of hub impedance may be found in References 4-6.

T

>~
L8

Since rather crude models have becn used for hub impedance (rigid mass, no

el

aerodynami.cs, etc.), one might wonder why more sophisticated models were not
used. The answer is straightforward. These were only the initial investigations
into this effect. Furthermore, although most analysts realized the importance of
detailed blade modeling for fixed hub loads (blade modes, unsteady aerodynam-
.»: ics, periodic coefficients, etc.), it was not clear in the beginning which of these
effects would bc important for finding the role of hub motion on loads. Because
of the high frequencies involed (4/rev, 8/rev), many felt that inertial terms would

dominate.

Reference 7 offers a sophisticated (but linear) rotor flapping model that allows

Y

for a detailed investigation of both loads and impedance (even in the presence
of periodic coefficients). The method, generalized harmonic balance, involves a

computer-bassed manipulation of equations that allows many degrees of freedom,

L4
LY

many modes, and many harmonics. In Reference 8, Hsu and Peters apply this

.

method to a flexible rotor and then use impedance matching to include plunge,

VY

pitch, and roll of the hub. This combined technique proves to be very efficient
on two counts. First, the calculation for only one blade can be used for n-blades
(as in Reference 1). Second, wholesale changes in fuselage properties can be made
without a requirement to recalculate rotor properties. It is interesting that other
investigators who began with a full-blown, coupled analysis later changed to the

impedance matching technique, Reference 9-10.

For inplane vibrations with a fixed hub, Reference 8 sets up the rotor equa-
tions with rigid blades, and Reference 12 treats the same problem but with elastic
blades.
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In Reference 13, a fuselage model with offsets and 9 degrees of freedom is
considered, coupled with a rigid inplane blade model. There is an important con-
clusion in reference 13 which will be very useful for further nonlinear analysis.
It is that the addition of inplane degrees of freedom does not significantly affect
the plunge vibrations for the cases considered, and these cases are for resonable

configurations.

1.3 SCOPE OF WORK

In order to predicate the helicopter coupled vibration much better, the rotor
with elastic blades should be considered. The scope of this research is to continue
the previous efforts in the study of inplane coupled rotor-body vibrations. To
do so, first, the dynamic partial differential equations of elastic blades including
hub motions should be derived. Second, hub loads equations should be derived.
Third, the fuselage equations are taken to be the same as those in Reference 13.
The major goal of this research is to investigate if higher frequencies of the elastic

blades will affect the coupled rotor-body vibrations.
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2. ELASTIC BLADE EQUATIONS

The equations of mntion for a flexible hingeless rotor blade in forward flight,
as derived in Reference 12, are the starting point for this analysis. The present
analysis, however, expands the previous work in following way. The hub motions
(including plunge, longitudinal and lateral displacements, pitch and roll angles,

and their first and second derivatives) are added to the equations.

2.1 COORDINATES AND THEIR TRASFORMATIONS

The coordinate systems used in the present analysis are shown in Figure 1.
The triplet X,Y,Z represents a fuselage fixed coordinate system; and the triplet
X,y,z represents a rotating coordinate system. Between the Z and z axes there is
a precone angle. The deflection components of the elastic axis of the deformed
blade (u, v, and w) are taken in the x,y,z coordinate system. The final set of axes,

z,y',2’ are taken along the deformed axes.

There are transformations among these coordinates. Figure 2 shows the pitch
angle o, and roll angle q,; and, Figure 3 indicates azimuth angle ¢ and precone
angle g,.. With these angles, one can trasform any vector, say F, from the fixed

coordinate X,Y,Z to the undeformed rotating coordinate x,y,z. We have:

F, Fx
(Fy) = [Tg] (FY) (1)
F, Fz

where,

[Tr] =

-+ sin Fp. sin o

(—siny cosa,)

+cos fpc sina,

( —gin fpc cos Y cos ac
\

+ cos fpe siny cos a,
+sin fpc cos ac sina,
(sinq(zsinc:c sin a,)

+cosy cosa,

_ cos i .
((cosﬂ,ccosaccosw) ( c0s fpc cos ¥ sin o sin o

sin fpc cos ¥ sin o sina, gin Bpc cos 9 sin o cos a,
) —sin fpcsin ¢ cos o, + sin B, sin ¢ sin o, }

+ co0s fpc cosacsina,

)

~ €08 Bpc €08 9 sin a¢ cos Oy
— co8 fpcsin ¥ sina,
+sin Apc cosag cos a,
(sinz[) SIN (e €OS vy )

—cosysina,

+cos Fpc cosac cosa,

)\

(2)

SRS

¥

.f- l,‘lc.ﬁz‘\-"\ ,'\l' =
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v =
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The transformation from undeformed coordinates to deformed coordinates is given

' .

] F.‘l' F.r
~_:‘\ (Fy:) = [Td] (Fy) (3)
- Fyp F,

K where,
P
. 1 vt wt
™ [Ta] = | 0wt - o+ 1 0 (4)
N —wt+ 0yt —f-wtevt 1
= With these transformations, we can transfer the vectors to any coordinates needed.
Other, kinematic contributions to 4 are treated as pitch-lag coupling.
:::
i 2.2 HAMILTON'S LAW
:'::'. The next step in the derivation is to apply Hamilton's Law to obtain equations
- of motion. The Hamilton’s Law can be expressed as
] s ar |
(6U—6T-—6W) dt+ —ébq| =0 (5)
. I ag; t,
r where, §U and T are the variations in strain energy and kinetic energy, and §W is

the virtual work. ‘s’ is the generalized coordinate. To apply equation (5), 6U, 6T

and §W must be formulated in terms of the generalized coordinates.

. 2.2.1 STRAIN ENERGY
i The strain energy can be expressed as follows:
1 (R
v=1 / / EQ,dA ds (6)
“ 2Jy JJa
then,
v
R
5U = f / Eepsbess dAde (7)
o JJa
& where,
'.\ 1)’, ‘u.l'2
:~ €xx =1 + =7 + < " v"[n cosf, — ¢ cosb.] — w"[n sin b, + ¢ cos 8,] (8
Y
o
N
>~
e
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0. =R.0

Therefore, §U can be fuether expressed as

R

§U = / {V,:[&u’ +9'6v + w'&w'] + [M,l +4My4R¢0]5V”
0

+[Mo R — My |sW"} dz

where,
12 12
Vo= Bafv+ 5+ 5}

My = El[v"R.0 ~ w")

M, = EL:[v" + w"R.0)]

Integration by parts of U gives the following result:

R
5U = / (Fubu+ Fobv + Pubu) de + b(U)
0
where,

Yu = —(Vxl)'
Y, = [My +MyR.6)" — (Vart')'

Y, = [My RO - M) = (Vo)

and the boundary condition is

R R
b(U) =Vebul + {V,:v' - [Mz' +My'Re0]'}6”
0 0
R R
+ [M,: +My'R¢H]6v' + {Vr'w - [Mz'Ree - Axly’l,}‘sw
0 0
R
+[MyrR6 - My )60’
0
L N L e L

(®)

(10)

(1)
(12)

(13)

(14)

(15)
(10)
(17

(18)

........
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2.2.2. KINETIC ENERGY

The kinetic energy can be expressed as

1 [R o .
=—/ // eV -V dndg dz (19)
2Jo JJa

and the variation is

R
6T=/ // pV - 8V dn ds dz (20)
0 A

where the velocity vector is

V= ;{21 + dyz18in 9 4+ acz) €08Y — A,y Fpccos Y
+ a1 Bpesing — Qy; — X cosp + Y sing) — Zﬂpc}
+7{51 + Gz cos ) — drr sing — Q21 fpe + Xsin
+ &py Fpe cos Y — 0cZ1 Bpc siny + Oz, +Y cosw}
+ {21 - duvs cost + ey sin g + Oy fpe — ez sin v

-2y cos;/;-{-)zﬂ,ccosw—).’ﬂpcsint/)—2} (21)

and where,

zr=z+u—2"[pcosh —¢sinfd] — w'[psind + ¢ cosh)
y1 =v+ncosf —¢sinf (22)
21 =w+nsinf + ¢ cosd

After integration over the blade cross section, the variation of kinetic energy be-

comes:

R
6T=/ (Z2u6u+ 2,6v+ 2pbw+ 289 + Zpi6u') de (23)
0
where,

2, = m[ii - dywsinQt + 205 + X cos Ot = ¥ sin 0t — Q2 sin Ot

+ 20a,8pcz cos QU — 2Qacfpcz sin Ot + Qaau cos (U
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+ 0%z - d,wsinQt + d, 2 + 2d,d.z cos (Ot sin (2
~ actwcos (3t — Zﬂpc + Zassin 0t + Za. cos Qt]
+ m(w + esin §)[—d, sin Ot — O, cos 2t — Q2 F,.]
2, = m[—b’ + 2acw sin (U + Qfpcth — daflpez cos (M + a,00fpcz sin (U
+ acPpexsinQt + afpcz cos (Ut — XsinQt — Y cos 2t — 2c,w cos O

? 2 sin 0 cos Ot

+ &2z sin (Ut cos (Ut — a'calp.ha,(cosgﬂt - sin’ﬂt) - Qg
+ 0Bpcth — 06, Bpez sin Ot — N6 Bpe cos Nt + 24, cos Ot ~— Zd, sin (1]

+mQ? (v + ecos ) — 2Qmi + 2meQ(v’ cos § + w' sin )
+ m(w + esin §)[—d, cos (U + o sin (]
Ly = m[—d} + 20,9 cos Nt — 209 sin Ut — 2QF,00 + d,pz sin (M + 20,0z cos Ot
+ &,z cosQt — 200, zsin U +Yd, + )?ﬂ,c cos (Ut — f’ﬁpc sin (Ot
-Z- z\.'.'alp'hac - Oaﬂ,cz - 20)"(/9},c sin (}t — 20).’,9” cos 2t
+ m(v + ecos 8)[d, cos Ut — 200, sin Qt — d. sin Ut — 20, cos (]
2, = mecosd[¥ sin Ut — X cos (Ot — W3z — 20]

Zpr = mesin 0[1-/ sin Qt — X cos (¥t — %z — 2Q09]

in which,

m = /f pdn d¢
A
mecosl =// plyr — v) dn d¢
A
mesinf =// p(z1 — w)dy d¢
A
Integration by parts again gives
R R
/ 2,64 dz =/ Zy§{8v)
0 0

R R ,
=2, 6v —/ Zubvdz
0 0

and
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(26)
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(31)

(32)

¢ - e
s & 4

“« .
’
.

W

-y
4

S
A R

T e
at e R

- PN

p e/, T

PNNN
‘l""i‘l 4 %

2

1 gt

v.s
)
’

. 5'1'31'

I,I

43

.




r"_‘l ‘\:‘

R ’
- f 2, 6wds (33)
0

R R
f 26w’ dz = 2w
0 ()

Finally, the variation of kinetic energy can be expressed as

6T = /R [2u6u+ (barZ, = 2,)6v + (2w — Zpi)6w)] dz + B(T) (34)
0

where the boundary condition is

R
o(T) = Z,6v
0

R

+ Zyibw (35)

0

2.2.3 VIRTUAL WORK

The final step necessary to compute the equations is the computation of virtnal
work. The virtual work, §W, is mainly due to the nonconservative external forces

which come from the theory of aerodynamics. The virtual work can be expressed as

R .
W =/ (Lubu + Lybv+ Lybdw)dz (38)
0

where L., L,, L, are forces acting along x,y,z directions.
2.2.4 GENERAL EQUATIONS

The functional of Hamilton’s Law has three variables u, v, and w. This will
lead to three Euler-Lagrange equations which are the required equations of mo-
tion. Later, « can be eliminated which will reduce the system of equations to only
two. The basic equations come from Equation (5). If we ignore the trailing terms
that are cancelled by

ty
5<If| =0 (37)
t
then we have
te
(U ~ 6T = W) dt =0 (38)

ty

Therefore,

§U 6T —§W =0 (39)
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with trailing terms dropped. In the case considered, we have
R
f {(Y,. =~ Zy—Ly)bu+ Vo= (20— 2,)) = Lo)bv+ [Yu — (20 - 2,,.) - L.,]&w} di +b(U) - b(T)
0
=0 (40)

From the principles of variational calculus, the equations of motion and boundary
conditions can be obtained from Equation (40).

8U equations:

Yu-2,=1L, (41)
§V equations:
Y, —(2,-2,)=L, (42)
6W equations:
Pu = (2o — Z4) = Lo (43)
and boundary condition:
b(U) = b(T) =0 (44)

2.2.5 BASIC EQUATIONS

With the help of the ordering scheme in Reference 12, but keeping flapping
equations o(e), lead-lag equation o(¢?), and eliminating axial deflection from U
equation, we obtain flapping and lead-lag equations in nondimensional form as

follows:
Flapping equation:
Alott+*r 4 (A ARG —rtuwt — ot $ 0% — 20t —ol%2sin
~2a52cos ) — al®cosyh +20l2siny + X**Fpccosyp — YV **fFpesinyg — Z2** + 802
=L, (45)
Lead-lag equation
2
AJot+Ht 4 (A3 = AR Gbarwtt Tt —rtot — et — 5 - 2/ wtwt dz
0
0% — a2 Bpesiny — a*zwsing + ol Zsiny cos P — 2aw° siny +22° 0t sin v
+a3°2f8,c cost + oy W cosy — a2 sin ¥ cos§ + 2a3w° cos P — 22°al cos ¥
+ajalz(cos’y — sin’t/)) —2Bpcw* + X**siny + Y** cos
=1, (46)
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2.3 AERODYNAMIC FORCES

In deriving the aerodynamic forces, the following assumptions are made
1. Linear, quasi-steady aerodynamics
2. Blade stall, compressibility and reversed flow are neglected.
3. Uniform induced flow

Figure 4 shows the free airflow passing through the helicopter. And, Figure 5
shows the blade element geometry. The total velocity with respect to air mass in
forward flight will be

ﬁr=ﬁ¢ir—ﬁ (47)
where,
l}air = voof—- (V + ‘U)I? (48)

and U is the velocity obtained in Equation (21). Using the transformation [T]
and [T,] in Equations (2) and (4), We obtain the required velocity components in
deformed coordinate with dimensionless form as follows:

Oy =—0wtpcosy — it pcosy —psing — 7* —barz — 4

—ajwcosy + a wsiny + Whpe — aj 2Py cosy

+alfp.2siny — X*singy — Y *cosy — 0

—0B8pcpcosy + bacp — 0w® +00a,°Zsiny

+0atzcosy +02* — da siny + Aa,cos 9 (49)
Op=—0%pcosy —w X costp + wH¥*siny — A

+Bpusiny + 02 + X*0siny + Y *0 cos ¢

— BBpccos + po; — w* + agZsin P

+atzcosty — X*fpc cosh +Y Gy singy + 2° (50)

In the deformed coordinate, the dimensionless aerodynamic forces can be expressed
as

Fp=0 (51)
C,
Fo= -glwm (53)

------------------
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Then, we can transfer the aerodynamic forces above to undeformed rotating co-

ordinates, which are
¥

F, Fo
Fy | =1Ta)" | £y (54)
F, Fy

Then, the external aerodynamic forces are

L,=F, (55)

L,=F, (56)

2.4 FINAL EQUATIONS

Combining Equation (45), (46) and Equation (55}, (56), we obtain the com-

plete flapping and lead-lag equations as follows:

FLAPPING EQUATION

AdottHt 4 (A3 —A])R Gt — 1wt —rw?t 4 0% — 20°F —a*Zsiny
—2a5zcosy —al*zcosy +2002sinyg + X**Fpccosyp — Y **Ppesiny — 2°° 4+ B2
_1{92-2 =3 0.7 si 2 o e . 2 P
=% sin® ¢ +02° + 20uzsiny + pa.siny + pasZsin® ¢ + patZsiny cos Y
+p2%sing + pack — 02+ a2’ sing + at2? cosy) — v u’sing cos P +2°2

— pAsin g — AZ — 47, sin Yo — p® sin ¢ — w2 cos Y — pfpeZ cos ¢} (57)
LEAD-LAG EQUATION

A?,v++-f+ + (A2 _AQ)R Tttt sttt — 5ttt — 4
- 2/ @0t dz + 9** — af* By sin P — al* 2w sin ¢
0

+ or:?i siny cosy —20.w*sing F22%.siny +a}*2f,. cosy

+a}*wcosy — 0125 siny cos ¢ + 2a5w° cosyp — 22°a; cos P

+abatz(cos?y — smaw) —28p.w* + X**sinyy + Y ** cos ¢
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+22X*siny 4+ 2u¥* sin Y cos 9 + 22Y * cos 111]} (58)

. THE BOUNDARY CONDITION

-~ R R R
:-.: Vebu +{V,m' - [M,: + My’R,ﬁ]’}év + [M,I + Mle¢0]6‘v'
R 0 0 0
- R R
o + {Vaw ~ [MyR0 ~ My)' }6w| +[M,Ref — My/J6u'
o 0 0
. . R
" —mecosO]Y sinQt — X cos 2t — Q%2 - 209)év
l._. 0
i . . R
— mesinf[Y sin( — X cos (% — 0%z — 206 }6w
i o
. =0 (59)
o
N
1

F.\“_K ALy lal Ak St gt A SN SN SV S sl A A/ SR MO A oAbl S b D s Bl it b et i e At TSl Rt T i b b Il S e B Y A R S Was b o 2t v LS .‘_L
ol ~14~
lx‘
* T[,,+3,2.. 3 2, .39 3.3 2.2
=;{w uicos’Y + A + u®Bpcfcos’ Y + pal
u +5*7 4+ 2°7 4 o2?2%in%y + a2 23 cos?y
-, —wt0udcosysing —wtOuzcosy + 20wt pcosy
“
. + 21D+p°ﬂ,c cosy —2wtplaccosy + 2wt W pcosy
_!' —20talpzcosysing — 20t alpzcos?y — 2wt 2% ucos ¥
) —0Apsin g —0p? Gy, sin ¢ cos ) + Opla sing
::'.‘. T - w*0pusinyg + fauzsin?y + Oaduz sin i) cos
L
i +02°psing — 022 — Opfpcz cosyp +uact — fu'z
l‘J
- +02°2 + 0232 sinyy + 22 cos ¢ + 2\ uBpccos
- ~ 2 poc + 200°* — 2Xalzsiny — 2hal2cosy — 20 Z°
Pt ;
- 2;;’3,,0., cos 9 + 2w* puflpe 099 — 203 fpcpz sin ) cos Y
- - 2a:ﬂ,cu£cos’¢ = 22°ufpccosyy — 2w pac + 2aca,2 sin ¢
+2ala,pkcos ) +22%uac — 20 a Esin ¢ — 20tz cos ¢
. —22°0* 4+ 2a5at2? siny cos P +22%a2siny +22%alz cos Y
_Ga 22 = q 20in 3
. (2% + p?sin? + 2pz siny + 2uz’sin’y
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It may be noted that for a rigid blade (for which v = 5z and v = ¢z, the flapping
u Equation (57) and the lead-lag Equation (58) reduce to those of Reference 13 with

- the exception of nonlinear higher-order terms.
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3. HUB LOAD EQUATIONS

The hub loads including the shears and moments, in both rotating and fixed
coordinate systems, are shown in Figure 6. C,, C,, and C, are radial, lead-lag,
and flap shear components; and C,, C,, C, are torsional, in-plane and out-of-plane
moment components in the rotating coordinate system. Cz, Cx, and Cy are the
vertical thrust, forward drag, and side force comp~uents in the fixed coordinate
system. The loads with respect to the rotating system are called rotating loads
and those corresponding to the fixed system are called nonrotating loads. They

are derived in detail below.
3.1 ROTATING LOADS

The expressions for the root shear and moment components in the rotating
coordinate system are formed by spanwise integration of the aerodynamic and in-

ertia loads as follows:

S, o 3[
c,=-/ F,dX-—/ 805 d2 (60)
T1Jo TJo
1 1
c,=f’-/ Fydz—if 2oydz (81)
TJo T Jo
1 1
Cx = E‘/ F: dz - i/ 8. d2 (62)
T Jo TJo
1 1 1 !
Cu= i/ F,zd:‘:+§/ ao,id2+§/ Frwdz - ?"/ oz dZ (63)
1Jo 7 Jo TJ0 T Jo
C,=~0 (64)
Con0 (65)

where the aerodynamic forces are obtained in Equation (54), and the dimention-

Jess accelerations are as follows:

8oz = 4** — 20w’ siny + 20.9° cos Y — 29" — a:’isinzw
—at?2cosy + 2adalzsiny cos ¥ — 2a;fpcZ cos ¢

+ 20 Bpczsing ~ 2 — a4 + Fpel — apy*hcos ¢

)
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+ai*wcosy + X** cosyp + ¥ **siny (68)
i Boy = 9*° + 24° — 20 0" cos Y — 2a0w° sinyy — 28,c0°
) —ajwsiny +alwcosy — 9 — allZsiny cosy
'{‘ —alalzsin’ Y + alal2 cos? Y + ol fpczsin ¢

+a2’2sincosy + al* BpcEcosy — at®BpcEsin g

-— ~a;*wcosy +ajwsinyg — al*wsiny — alwcos Y
—X**siny +¥Y* cosy (67)
8o, =0** +2a,2cosy +2alZsiny + Bpcz
+a}*zsiny ~ altzcosy + 2*° (68)
3.2 NON-ROTATING LOADS
f‘; The shear and moment components in the fixed coordinate system are formed

from the load components in the rotating coordinate system. They can be simply
expressed as

Cx = C, cos - Cysin ¢ (69)
Cy =C,siny +Cycos ¢ (70)
» Cz=C, (1)
CL = ~Cysiny (72)
Cm = Cycosy (73)

They can be put into matrix form as done in Reference 13. It is:

-

g (CM\ Z: [ o (a;\ (o(:.W

- CL o ot e

o Ox | = ["’('“] A + [A(W)] £ |+ [B(u')] x|+ [D(u)] oo

> Cy g 12 Ye oo

.:E \Cz ) Z:: \ 2 ) \ 2* vy
Y

e

. 4+ e 04 o0 _—++ et + o -8 _ee
+{I’1(w,w Jat, T, et wtt w AN )} (74)
Y
(Q_
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Again, Equation (74) matches the similar equation in Reference 13 very well, ex-

=

cept for the additional nonlinear terms.
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4 FUSELAGE EQUATIONS

In this research, the same model as in Reference 13 is used for fuselage, except
that X and Y axes have opposite positive directions. Figure 7 shows the fuselage
model in the longitudinal and pitch diizctions.

This model includes 9 degrees of freedom. These are:
1) vertical rigid-body;

2) rigid-body pitch;

3) rigid-body roll;

4) rigid lateral;

5) rigid longitudinal;

6) elastic vertical;

7) elastic lateral,

8) elastic pylon in pitch,;

9) elastic pylon in roll.

The model also includes vertical offsets between the fl_lselage center of mass, the

pylon focus, the pylon center of mass, and the rotor center.

The fuselage is modeled as a uniform beam with a lumped mass M. added
at the center. The mass of the pylon is separated from the fuselage, which is
connected to the fuselage through pitch and roll torsional springs. The fuselage
equations of motion are the same as those in Reference 13, except that the X and

Y axes are reversed.
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5. SOLUTION METHOD -_
1
N 6.1 GALERKIN METHOD
»
X The flap-lag equations of motion, Equation (57) and (58), are nonlinear, vari-
.\- - 3 . - - 3 - .
NGt able coefficient, integro-partial differential equations. First, these equations can
be reduced to nonlinear ordinary differential equations in terms of the generalized
-
coordinates by use of the modal form w = ¢;¢; and v = ¢p;, and the Galerkin
AR method as below:
S
M; Ma\ (& Cij Cu\ [4 Ki; Ka\ {4 F
S + + = (75)
PR M;; My 7] Cxj Cu ] Krj Kn D Fy
. - Where M, C, and K are functions of ¢, p, and their derivatives and where
wl
&
%, =1,...m number of flap degrees of freedom;
o and
- . k,l=1,...n number of lead-lag degrees of freedom.
5.2 HARMONIC BALANCE
y :f': As done in Reference 13, fuselage equations can be transformed into a set of
b, linear, algebraic equations by a harmonic balance which is formulated in matrix
- notation for a linear, multi-degree-of-freedom system in Reference 7. In our case,
. . the equations are nonlinear. Therefore, an iniportant conclusion obtained in Ref-
N X erence 13 can be used. As mentioned before, it says that the addition of inplane
¥ degrees of freedom does not significantly affect the plunge vibrations for the cases
-
considered, and these cases are for resonable configurations. Figure 8 and 9 shows
the comparison of plunge vibration with or without inpline degrees of freedom.
f . "N
 ly Therefore, we can first solve the plunge-pitch-roll problem with inplane pa-
> rameters eliminated. To do this, the flapping equation is expressed as below:
4
j .
. My ... My a’ Cu ... Ci N Kn ... Ky Q
* S
4
L + +
. ': M.'] e M,'_,' q;' C,‘l o C,‘j q; K.‘l K,'J q;
BE
TR
4
J ' ----------------
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ac ac

= [ow] AQﬂMM ar | +[a] | o |+ [ow)] | o (76)
5 o

-e

and the load equation (74) becomes

(%)
0,

bc

\ & J

+[Bw] |+ | +[Fw] | ¢ | +[ew]] : (77

g5 g5 q°

For the fuselage equations, we have eliminated X, ¥, and Yr, and their derivatives.
Now, these equations are linear ordinary differential equations with peoriodic co-

efficients. They are easily solved by harmonic balance technique and impedance

matching. The control vector components 6,, 4,, 6., A, 8, Bpc, G

¢ !

and a, can be
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obtained from a trim procedure.

. For the next step, we go to Equation (75) with ¢, ...¢; and a,, a,, and Z and
n

\ their derivitives as knowns. The flap-lag Equations (75) can be further expressed
o as

" Mi; Ma g; Ci; Cu gj Ki; K q;
R + +
b My; My 7] Cxj Cu ] Kiy; Ku Pt

\_ . ( b, \

"
2 (> () &
G s - [‘?W] ; +[fi(¢)] x +[B(¢)] X: +[Dw)] x (78)
Y P
_Z: \ 2 ) \ 2° / L 2 )
§ o)

and the load Equations (74) can be further expressed as

(%)
k ‘.
- (On ; () (e (o
cL ° o o ae
A
Cx | = [<I>(1/1)] + [A(wlz)] X1+ [B(w)] Xt |+ [D(d})] X
e d i i !
-:., CY Y Y‘ Y"
’ Bpe
\c: ) o \ 2 ) \ 2 ) \ 2+
N e
\ & /
9 g5 q;°
fe] (*) + o] (7] o] (7] o
. p P p
Then, using flap-lag Equations (78), load Equations (79) and complete fuselage
equations, we can finally solve the inplane problem.
s
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6. STATEMENT OF WORK

In helicopter preliminary design stage, it is very important for designers to
determine the helicopter structure dynamic parameters. Besides getting a stable
system, we hope that helicopter vibrations can be reduced as much as possible
in the helicopter flight envelope. Since different combinations of fuselage and ro-
tor parameters can cause quite different vibration levels, we should study them
carefully. As is well known, most hingeless rotors can be considered as relatively
soft flapwise, except the ABC blade which is stiff flapwise. So, we will choose
a soft flapwise rotor system as done in Reference 7 and Reference 13. For the
inplane direction, soft inplane and stiff inplane both are common. Therefore, this
_ investigation includes both soft inplane and stiff inplane rotors. In brief, we will

el

change fuselage dynamic parameters (the fuselage first bending natural frequen-
cies in vertical and lateral directions, and the pylon torsional natural frequencies
in pitch and roll directions) to match two categories of rotor systems, which are
soft flapwise, and both soft inplane and stiff inplane. Also, the fuselage layout
will affect the dynamic response significantly, as obtained in Reference 13, the
configurations without or with offsets are concerned.

In order to finally solve the Equations (78) and (79) with different dynamic
i; parameters described above, the detailed procedure are as follows. At first, Equa-
tions (76) and (77) should be solved in order to obtain the generalized coordinates
@1 ...9; and o, a,, and Z and their first and second derivatives as knowns. To do
so, three nonrotating out-of-plane bending modes are used, which are the same
as those in Reference 8. Also, the baseline parameters are chosen as the same

R

as those in Reference 8 for comparison purposes. The baseline parameters are as

s> (.l“ '/

eala

follows:
4
Rotor: 4 blades +=8 p=.3
p=1.12 wg =2.5 w3 = 4.5
Fuselage Fym = .37 FoL = .14
@y = 1.53 Gfm = 2.58 @sL =118
g @pof@ey = 1.45 @fom[@cm = 10.0 G fcr = 4.47
gv=9m=gL=-02 h=df'='lp=0'0
Trim Condition: |Cz| = .0144 |CL| =|Cm| =0.0

T

a, = -.0715 A =.03187
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-------------



T e g e R TR B Tl Te Wa T W T LA O, et , (A2 e ' et AV AV P g ol i gNIC A el - AR Al Ve T TP TOTT I

R L T R e e

o -24-
! Next, we add three nonrotating blade inplane bending modes. In order to
study the dynamic response for both soft-inplane and stiff-inplane rotors, two sets
:ti of three nonrotating blade inplane bending modes are used to correspond to dif-
¥ ferent rotors. For the comparison purposes, the first inplane nonrotating bending
; - frequencies corresponding to soft inplane and stiff inplane rotors are the same as
T those in Reference 13, which are w; = .7 and w, = 1.4, respectively. Also, we need
E::L both lateral damping coeffecients of the fuselage and the steady portion of side
S forces, which are g, =.02, .002, and |Cx| =|Cy| = 0.0, the same as those in Reference
b 13.
:‘ The last step is to study the effects of offsets. The same parameters, k = .4,
d, = 0.0, and dr = .2 as those in Reference 13, are used for both soft inplane and stiff
- inplane cases. Thus, we can obtain all responses for different possible situations.
o At the present point in our research we are transfering our computer codes
from the VAX system at Washington University to the CDC system at Georgia
~ Institute of Technology. When this work is completed, we will be able to continue
o the numerical work and should have our first answer shortly. The first runs will
l- be validation runs to ensure that we can repeat the results of References 8, 12,
- and 13. Then we will procede to studies of parameter variations.
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a
A

b
Ca,

Cz
Cx,Cy,Cz,Cm,CL

CX,CY) CZ,C'M,C'L
dr

d
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7. NOMENCLATURE

= slope of lift curve, 1/rad

= ratio of rotor mass to moment of inertia, MzR/I,

= number of blades
= blade profile drag coefficient

= conventional thrust coefficient, thrust/p=Q%R*

= vibratory portion of nondimensional longitudinal

force, lateral force, thrust, pitch and roll

moment over ca

= steady portion of coefficients

= offset between focus and center of pylon,
divided by R

= offset between focus and center of pylon,
divided by R

= offset between hub and center of pylon,
divided by R

= mass centroid offset from elastic axis of a blade

= beam cross-section bending stiffness

= vector of forces

= nondimensional acceleration of gravity, ¢/QR

= plunge, lateral, pitch and roll structural
damping, ~ 2¢/wn

= offset between hub and focus, divided by R

= fuselage receptance

= identity matrix

= pitch inertia moment of pylon, divided by M, R?

= roll inertia moment of pylon, divided by A,R?

= pitch inertia moment of fuselage, divided by M R?

= roll inertia moment of fuselage, divided by Mg R?

= length of the beam, m
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= mass per unit beam length, kg/m

= lumped mass on the center of fuselage, kg

= mass of pylon, kg

= mass of fuselage, M, + ml, kg/m
mass of whole fuselage, M, + m! + M,, kg
generalized coordinates

Fpm; Fpl radius of gyration of pylon in pitch, roll,
divided by R
FrmifrL = radius of gyration of fuselage in pitch, roll,

divided by k

= rotor radius, m

= beam mass divided by whole airframe mass,
ml/(ml + M, + M,)

= transformation matrix, Equation (4)

= transformation matrix, Equation (2)

= blade airfoil velocity with respect to the air mass,
m/sec
also strain energy, N-m

= velocity components of blade airfoil section,
perpendicular and parallel to the chord
respectively, m/sec

= elastic deformation in z,y,: directions
respectively, m

= velocity vector of a arbitrary point on deformed
blade, m/sec

= virtual work, N-m

= distance along fuselage, nose to tail, or
distance along radius of rotor, root to

tip, divided by R
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2,Y,2 = rotating coordinates fixed on the blade
2,y,7 = deformed coordinates fixed on the blade
XY, 2 = fixed fuselage coordinates
K Yr, 25 = dimensionless fuselage elastic degree of freedom :
R in vertical and lateral directions : /
S ac . = pitch angle of hub, fuselage, positive nose up, ;
o rad 'f
N a, = roll angle of hub, fuselage, positive advancing
o side up, rad :
= ] § = equilibrium flapping angle, rad '.;
L Bo+ Besiny + B cos h!
- o = coning angle, rad -
by B, = lateral cyclic flap angle, rad N
o Be = longitudinal cyclic flap angle, rad
i Bpe = pre-cone angle ’
' ¥ = Lock number
~ = first variation X
‘ € = scaling parameter, (=.1)
'5 6.0 = blade cross-section principal axes coordinates .
- {6} = vector of control variables
b ] = equilibrium pitch angle, '.}
™ 8o+ 0,sin ) + 0, cos s+ 05(8 ~ Bpe) +65¢
00,06,0, = collective and cyclic pitch, rad ;
: A = inflow ratio 5,
L b = advance ratio R
| : :‘. b = ratio of mass of pylon to mass of fuselage, 7
My (mi + M) 3
. > Be = ratio of lumped mass to the uniformly Z:
C distributed mass, M,/mi ‘
. ..f, P = air density, kg/m? |
s -
.
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g ! 0 = rotor solidity 3
S; oij = stress tensor components, N/m? ‘
' r = dimensionless tenssion
L = blade azimuth angle, nondimensional time -
= natural frequency of fuselage, divided by 0 N
- Gxy = frequency of "y” motion with "x” boundary
. condition, divided by Q; y = z,y,m,L plunge, .
o lateral, pitch, roll, x = ¢, f cantilevered,free 3
o
) 0 = rotor speed, rad/sec
= 0 =d()/dy
[ :
_ 0 C =4d()/at '
> 0+ = d()/dz :
i
5 d = a()/ax :
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